

УДК 541.64:66.095.26+628.35 ББК 24.72+38.761.2

ПОЛУЧЕНИЕ ЭФФЕКТИВНОГО ХЕМОСОРБЕНТА ДЛЯ ИСПОЛЬЗОВАНИЯ ЕГО В КОМБИНИРОВАННОМ СПОСОБЕ ОЧИСТКИ ПРОМЫШЛЕННЫХ СТОЧНЫХ ВОД

И.В. Лавникова, М.П. Лябин, В.Ф. Желтобрюхов

Проведены исследования привитой полимеризации глицидилметакрилата к поликапроамидному волокну с использованием окислительно-восстановительной системы $Cu^{2+}-H_2O_2$. Установлены кинетические параметры, влияющие на выход привитого полиглицидилметакрилата. Показана эффективность использования привитого сополимера, содержащего активные фосфорсодержащие группы, в качестве хемосорбента.

Ключевые слова: глицедилметакрилат, привитой сополимер, поликапроамид, кинетика, биотехнология, хемосорбиия, металлы, токсичность.

Рост объемов промышленного производства уже сегодня не позволяет существующим очистным сооружениям справляться с увеличивающейся нагрузкой по очистке сточных вод. Строительство новых очистных сооружений так же, как и модернизация старых, требует огромных финансовых вливаний, которые способен выдержать далеко не каждый бюджет. Одним из решений задачи по качественной очистки стоков является применение современной технологии -биотехнологии, которая легко справляется с разложением жиров, растительных масел, крахмала, белков, других органических соединений, уменьшает количество нитратов, фосфатов, нефтепродуктов и многих других загрязняющих веществ. Данная технология не требует больших материальных затрат для внедрения, так как нет необходимости в специальном оборудовании и дополнительном обслуживающем персонале. Кроме этого при биохимическом методе очистки металлические трубы и аппараты не подвергаются коррозии. В настоящее время имеется немалое количество исследований по биоочистке промышленных сточных вод от металлов и их соединений [6]. Но, несмотря на достигнутые определенные успехи в этой области, до сих пор

микробиологическая трансформация и детоксикация как металлов, так и их соединений изучена недостаточно, а использование данного метода в условиях реального производства находится на начальной стадии разработки и становления.

Вместе с тем в течение последних лет отмечается тревожная тенденция увеличения загрязнения тяжелыми металлами природных водоемов, а как следствие городского и сельского водоснабжения. При этом следует отметить, что если такие металлы, как хром, свинец, медь и цинк, обладают токсичными свойствами и представляют при этом опасность при высоких концентрациях, то ртуть и кадмий обладают токсичностью по отношению к человеку уже при концентрациях на порядок ниже.

Поэтому наиболее оптимальным является комбинированный способ очистки промышленных сточных вод, сочетающий биотехнологию с хемосорбцией, что дает возможность удалять ионы перечисленных выше металлов.

Перспективным хемосорбентом является волокнистый материал, полученный в результате привитой полимеризацией глицидилметакрилата (далее – ГМА) к поликапроамидному волокну (далее – ПКА) и последующей обработкой феноксиметилфосфоновой кислотой, поэтому исследование процесса привитой радикальной полимеризации к ПКА представляется актуальным.

Целью проведенных исследований является совершенствование разработанных методов [8] синтеза привитых сополимеров поликапроамида (далее — ПСП) и нахождение оптимальных технологических параметров получения ПКА с ГМА. К основным факторам проведения реакции привитой полимеризации

ПКА с ГМА в присутствии окислительно-восстановительной системы (далее – OBC) Cu^{2+} – H_2O_2 следует отнести: концентрации мономера и компонентов OBC, температуру полимеризации и время проведения реакции.

Привитую полимеризацию, по-видимому, можно представить схемой (см. рис. 1).

$$[NH(CH_2)_4CO]_n + \bullet OH \rightarrow [NH CH(CH_2)_4CO]_n$$

$$[NH CH(CH_2)_4CO]_n + m CH_2 - CH CH_2OC(O) - C = CH_2 \rightarrow [NHCH(CH_2)_4CO]_n$$

$$| CH_3 |$$

$$| CH_2 - C]_m$$

$$| CH_2 - CH CH_2OC = O$$

Рис. 1. Схема реакции привитой полимеризации ПКА с ГМА

В результате окислительно-восстановительной реакции между пероксидом водорода и ионами меди образуется •ОН радикал, который, взаимодействуя с ПКА, приводит к образованию долгоживущих макрорадикалов, инициирующих реакцию привитой полимеризации [8].

Исследование влияния концентрации ГМА на количество привитого полиглицидилметакрилата (ПГМА) и конверсию мономера проводили при концентрации ГМА 0,24—16,5 моль π^{-1} . Привитую полимеризацию проводили в эмульсии, в качестве эмульгатора использовали поливиниловый спирт в количестве 0,1 %, при следующих условиях: инициирование $-[H_2O_2] = 0,08$, $[Cu^{2+}] = 0,018$ моль× π^{-1} , t = 60 °C; $\phi = 50$ мин; прививка -t = 700 С; $\tau = 60$ мин, модуль ванны 30.

Как показали результаты эксперимента, процесс привитой полимеризации на начальном этапе идет с достаточно большей скоростью $9.8 \times 10^4 - 0.5 \times 10^4$ моль \times л $^{-1} \times$ с $^{-1}$ соответственно для граничных значений концентраций. Увеличение концентрации мономера выше 2.35 моль \times л $^{-1}$ нецелесообразно, так как количество ПГМА возрастает незначительно. На основании полученных данных при изменении [ГМА] в пределах 1.2-2.35 моль \times л $^{-1}$ по методике, приведенной в работе [11], был

рассчитан порядок реакции по мономеру, он оказался равен 1,93. Это значение несколько выше, чем для гетерогенной реакции полимеризации, что, по-видимому, связано с захватом макрорадикалов полимерной фазой [3].

В настоящее время для синтеза ПСП применяются методы с использованием ОВС, основанные на присоединении одного из компонентов ОВС к макромолекуле ПКА. Реализация данного принципа позволяет получать ПСП с очень высокой эффективностью реакции привитой полимеризации, потому что распад пероксидированного соединения происходит либо на самом волокне, либо в непосредственной близости от него. Это приводит к образованию активного полимерного центра, по которому в дальнейшем осуществляется привитая полимеризация различных мономеров [8]. При исследовании влияния концентрации Н₂О₂, подтверждается закономерность, отмеченная в работе по привитой полимеризации [5]: количество привитого полимера сначала возрастает до определенного предела увеличения [H₂O₂], а затем резко падает, что, по-видимому, объясняется участием пероксида водорода в обрыве растущих цепей ПГМА. Кинетические параметры процесса привитой полимеризации с использованием ОВС представлены в таблице 1. На основании полученных данных можно говорить о том, что ионы меди оказывают каталитическое действие на реакцию привитой полимеризации. В отсутствие в ОВС меди прививка не идет, а уже при концентрации меди в растворе 0,0049 моль \times л⁻¹ скорость реакции составляет $2,3 \times 10^{-4}$ моль \times л⁻¹ \times с⁻¹, количество привитого ПГМА – 22 мас. %. Скорость реакции возрастает при использовании инициирующей системы Cu^{2+} – H_2O_2 , по сравнению с известны-

ми инициирующими системами Fe^{2+} — H_2O_2 [8]. Следует отметить, что при увеличении [Cu^{2+}] в растворе начальная скорость возрастает в 2,7 раза, до 6.1×10^{-4} моль \times л $^{-1} \times c^{-1}$. Рассчитанные порядки реакции по пероксиду водорода и меди несколько ниже, чем при гетерогенной полимеризации. По-видимому, это связано с тем, что константы передачи цепи на мономер невелики, процесс выхода радикалов из частиц не столь существен, но эти данные хорошо согласуются с результатами работы [9].

Tаблица 1 Влияние содержания компонентов ОВС на кинетические параметры привитой полимеризации ГМА *

Компонент ОВС	Концентрация компонента, моль × л ⁻¹	Количество привитого ПГМА, мас. %	V _п × 10 ⁴ моль ×	$V_{\pi}^{\text{Masc}} \times 10^{-4}$ $\pi^{\text{-}1} \times c^{\text{-}1}$	Порядок по компоненту
H ₂ O ₂	0,0098 0,078 0,118 0,198	11±4,1 15±3,2 30±6,1 35±7,2	12±2,3 1,8±0,5 3,5±0,03 6,1±0,8	3,8±0,01 4,3±0,05 8,1±0,04 11±0,02	0,71±0,3
Cu ²⁺	0 0,0049 0,01 0,018	0 22±4,3 24±6,2 37±5,4	0 2,3±0,11 2,6±0,02 6,1±0,7	0 7,8±0,05 9,1±0,1 12,9±1,1	0,2±0,05

^{*} Условия реакции: инициирование – t= 80 °C; ϕ = 60 мин; прививка – [ГМА] = 2,35 моль × π ¹; t= 80 °C, ϕ = 60 мин, модуль ванны 30.

При исследовании влияния температуры привитой полимеризации отмечено, что при 0–60 °С выход привитого ПГМА составляет 0,1 мас. %, при повышении температуры на 10 °С количество привитого ПГМА составляет 43 мас. %.

Из результатов (см. табл. 2, рис. 2) проведенных исследований влияния температуры на параметры привитой полимеризации (проводимой при следующих условиях: инициирова-

ние — $[H_2O_2] = 0.08$; $[Cu^{2+}] = 0.018$ моль \times π^{-1} , t = 80 °C; прививка — $[\Gamma MA] = 2.35$ моль \times π^{-1} , модуль ванны 30) следует, что в исследуемом интервале температур процесс привитой полимеризации на начальном этапе идет с высокими скоростями. Так, при 62 °C начальная скорость полимеризации равна 0.6×10^4 моль \times $\pi^{-1} \times c^{-1}$, а при 70 °C достигает 7.4×10^4 моль \times $\pi^{-1} \times c^{-1}$ с одновременным увеличением количества ПГМА до 43 мас. %.

t _п , °C	$V_{\pi} \times 10^4$	$V_{\pi}^{\text{makc}} \times 10^4$		
v _{II} , C	моль \times л $^{-1}\times$ с $^{-1}$			
62	$0,6\pm0,04$	1,5±0,4		
65	3,7±0,5	$6,3\pm0,1$		
70	7,4±0,7	12,3±0,5		

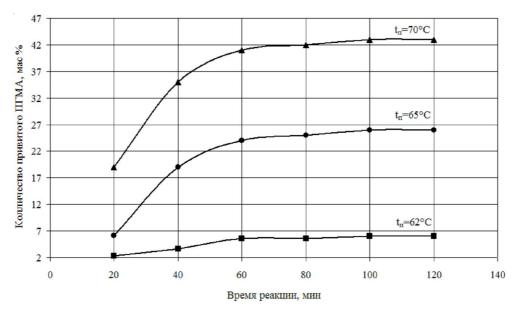


Рис. 2. Влияние температуры полимеризации $t_{_{\rm II}}$ на количество привитого полиглицидилметакрилата

На основании кинетических кривых, полученных при исследовании температурной зависимости, была рассчитана энергия активации гетерофазной привитой полимеризации, она оказалась равна 53,33 кДж × моль × π^{-1} , что характерно для свободнорадикальных процессов привитой полимеризации, основанных на передачи цепи от низкомолекулярного радикала на полимер [9]. Результаты эксперимента,

представленные в таблице 3, указывают на замедление процесса привитой полимеризации во времени и полное ее прекращение через 80 мин.

В дальнейшем с целью увеличения статической обменной емкости синтезированный волокнистый сорбент подвергался обработке 5-20 % водным раствором феноксиметилфосфоновой кислоты при температуре 60-80 °C в течение 1-1.5 часа.

Таблица 3 Влияние продолжительности реакции привитой полимеризации на количество привитого ПГМА*

τ, мин	Концентрация [ГМА], моль×л ⁻¹			
	1,175	1,76	2,35	
0-20	2,6±0,3	15,2±2,4	19,2±2,4	
20-40	3,2±0,5	30,1±1,5	36,7±2,5	
40–60	4,9±0,4	34,7±2,6	40,2±4,7	
60-80	5,1±0,8	36,0±1,7	45,0±3,3	
80–100	5,2±0,2	36,1±2,5	45,0±2,7	
100-120	5,3±0,4	36,0±3,3	45,1±4,5	

^{*} Условия реакции: инициирование — $[H_2O_2]=0.08$, $[Cu^{2+}]=0.018$ моль \times π^{-1} , t=80 °C; прививка — t=80 °C, модуль ванны 30.

При этом наблюдалось присоединение по эпоксидной группе привитого сополимера активных фосфорсодержащих групп, способных

к ионному обмену, что способствует увеличению статической обменной емкости (см. табл. 4).

Зависимость статической обменной емкости волокнистого сорбента от содержания фосфора

Содержание фосфора, %	Статичес кая обменная емкость, мг-экв/г
0	2,3±0,5
2,9	3,8±0,4
3,0	3,84±0,2
3,3	3,9±0,3
3,4	4,0±0,2
3,8	4,5±0,1

Экспериментальная часть

Поликапроамид в виде штапельного волокна (1 г) помещали в колбу с обратным холодильником и активировали OBC Cu^{2+} – H_2O_2 . Для этого ПКА обрабатывали 0,098–0,198 М водным раствором H_2O_2 в присутствии 0–0,018 моль \times \times π^{-1} Cu^{2+} – при температуре 50–100 °C в течение 10–90 минут. В качестве медьсодержащего соединения использовали медный купорос. Модуль ванны 30. Активированный ПКА тщательно промывали водой в течение 60 мин для удаления избытка H_2O_2 и соли меди. Контроль за полнотой отмывки осуществляли по определению активного кислорода.

Затем ПКА обрабатывали 0,3-16,5 моль \times л⁻¹ эмульсией ГМА в колбе с обратным холодильником в течение 10-120 мин при 60-80 °C.

Количество привитого полимера контролировали взвешиванием, а также рассчитывали по содержанию б-оксидных групп. Суммарную энергию активации находили расчетным путем по температурной зависимости константы К.

В термостатированную колбу с обратным холодильником помещали 5–20 % водный раствор феноксиметилфосфоновой кислоты и привитой сополимер поликапроамида, термостатировали содержимое колбы в течение 1,5 ч при температуре 60 °C, промывали и сушили.

Исследование позволило сделать следующие выводы:

- 1. Определены основные закономерности реакции привитой полимеризации глицидилметакрилата к поликапроамидному волокну с использованием окислительно-восстановительной системы Cu^{2+} – H_2O_2 .
- 2. На основании установленных оптимальных технологических параметров найдено, что максимальное количество привитого сополиме-

ра полиглицидилметакрилата достигает 46,5 %, при этом привитая полимеризация протекает без образования гомополимера.

3. Присоединение активных фосфорсодержащих групп по эпоксидным группам привитого сополимера способствует увеличение сорбционной обменной емкости волокнистого материала и как следствие улучшение хемосорбционных свойств.

СПИСОКЛИТЕРАТУРЫ

- 1. Заремский, М. Ю. Определение кинетических параметров псевдоживой радикальной полимеризации методом линеаризации распределения макромолекул по длине цепи / М. Ю. Зарецкий // Высокомолекулярные соединения: серия $A.-2006.-T.48, N \cdot 3.-C.404-442.$
- 2. Кардаш, М. М. Разработка высокоэффективных хемосорбционных фильтров для очистки воды / М. М. Кардаш, И. А. Тюрин // Химические волокна. -2010. N $\!\!\!_{2}$ $\!\!\!_{2}$ $\!\!\!_{3}$ $\!\!\!_{4}$.— С. 36–40.
- 3. Королев, Г. В. Трехмерная радикальная полимеризация. Сетчатые и гиперразветвленные полимеры / Г. В. Королев, М. М. Могилевич. СПб. : Химиздат, 2006. 344 с.
- 4. Лавникова, И. В. Сорбционные свойства материалов на основе привитых сополимеров поликапроамида / И. В. Лавникова, Г. Д. Бахтина, В. Ф. Желтобрюхов // Журнал прикладной химии. 2005. Т. 78, № 11 С. 1845—1847.
- 5. Научные основы химической технологии углеводов / под. ред. А. Г. Захарова. М. : URSS, 2008.-523 с.
- 6. Пат. 2216525 Российская Федерация, МПК 7 С02F3/34, С12N1/20, С12N1/20, С12R1:01. Способ микробиологической очистки сточных вод промышленных предпрятий от ионов тяжелых металлов: цинка, кадмия и свинца / Соловых Г. Н., Ушакова Е. И., Ившина И. Б., Раимова Е. К. —№ 2002106289 /13; заявл. 03.11.02; опубл. 20.11.03. 6 с.

- 7. Пат. 2441037 Российская Федерация, МПК 7 С08G 69/48 ,D06M 14/16. Способ получения привитого сополимера поликапроамида / Лавникова И. В., Желтобрюхов В. Ф. № 2010145281/04; заявл. 08.11.2010; опубл. 27.01.2012. 6 с.
- 8. Перевалова, Е. А. Интенсификация процесса получения модифицированного поликапроамидного волокна / Е. А. Перевалова, В. Ф. Желтобрюхов, С. М. Москвичев // Журнал прикладной химии. -2004. -T. 77, N 1. -C. 148–151.
- 9. Семчиков, Ю. Д. Высокомолекулярные соединения / Ю. Д. Семчиков. М. : Академия, 2008. 368 с.
- 10. Синтез привитых сополимеров поликапроамида и полидиметиламиноэтилметакрилата: математическое моделирование и оптимизация технологического процесса / Е. А. Перевалова [и др.] // Химическая промышленность сегодня. 2012. № 4. С. 26–28.
- 11. Торопцева, А. М. Лабораторный практикум по химии и технологии высокомолекулярных соединений / А. М. Торопцева, К. В. Белогородская, В. М. Бондаренко. Л.: Химия, 2000. 416 с.

- 12. Химические превращения целлюлозы в составе растительного сырья / Н. Г. Базарнова [и др.] // Химия растительного сырья. -2005. -№ 3. -C. 75–84.
- 13. Investigation on the polyamide 6/organoclay nanocomposites with or without a maleated polyolefin elastomer as a toughener / F.-Ch. Chiu [et al.] // Polymer. 2005. –Vol. 46, № 25. –P. 11600–11609.
- 14. Polyamides based on the renewable monomer, 1,13-tridecane diamine II: Synthesis and characterization of nylon 13,6 / S. Samanta [et al.] // Polymer. -2013.- Vol. 54, N₂ 3. -P. 1141-1149.
- 15. Solubility of caprolactam in different organic solvents / C. Guo [et al.] // Fluid Phase Equilibria. 2012. –Vol. 319, № 14. P. 9–15.
- 16. Structure formation of hjlyamid the glassy stste by fast scfinning chip calorimetry / I. Kolesov [et al.]// Polymer. –2011. –Vol. 52, №22 P. 5156–5165.
- 17. Study of porous structure of polyimide films resulting by using various methods / I. A. Ronova [et al.] // The Journal of Supercritical Fluids. -2012.- Vol. 70, N 46. P. 146–155.

OBTAINING EFFECTIVE CHEMISORBENTS FOR USE IN A COMBINED WAY OF INDUSTRIAL WASTEWATER TREATMENT

I.V. Lavnikova, M.P. Lvabin, V.F. Zheltobryukhov

Investigations of graft polymerization of glycidyl polycaproamide fiber using a redox system Cu²⁺– H₂O₂. Kinetic parameters affecting the yield of grafted poliglitsidilmetakrilata. The efficiency of a graft copolymer containing the active phosphorus groups as chemisorbent.

Key words: glitsedilmetakrilat, grafted copolymer, polycaproamide, kinetics, biotechnology, chemical adsorption, metals, toxicity.